
Velocity autocorrelation function in fluctuating hydrodynamics: frequency dependence of the

kinematic viscosity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys.: Condens. Matter 4 L303

(http://iopscience.iop.org/0953-8984/4/20/001)

Download details:

IP Address: 171.66.16.159

The article was downloaded on 12/05/2010 at 11:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/20
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys: Condenr Matter 4 (1992) UWW. Printed in the UK 

LETI'ER TO TJTE EDITOR 

Velocity autocorrelation function in fluctuating 
hydrodynamics: frequency dependence of the kinematic 
viscosity 

Roumen Bekov and Boryan Radoev 
Department of Physical Chemistry, University of So%, S o b  1126, Bulgaria 

Receivd 5 February 1992 

AbstracL The memory effecls in Euids are studied using Mori-Zwanzig formalism. 
An q l i c i t  form of the velocity autocorrelation fundion (VACF) of the hydmdpmic 
Buctuations and the corresponding frequency dependence of the kinematic vismdity are 
obtained The reasoning is based on a modelling cf the Langevin force resulting from 
an effective collision. The damped, oscillating VAC# obtained is in agreement with the 
known numerical simulation results. 

It is well known that the momentum balance of fluid motion can be presented as a 
generalised Langevin equation [l-31 

p(dVk/dt) + G(t)Vk = Fk(t )  (Vk(i)Fk(t + T)) = 0 VT > 0 (1) 

where p is the mass density of the fluid, Vk(l) is the spatial Fourier image of the 
fluctuating hydrodynamic velocity, GV, is the friction force and F, is the Langevin 
force with mean value zero. Because of the common molecular-kinetic origin of two 
ad hoc introduced forces GV, and Fkr these are not independent. Their relationship, 
identified by Kubo [l], the second fluctuation-dissipatioion theorem, is formulated most 
generally by Mori [Z] and Zwanzig [4] 

where C,,(k, T) and Cvv(/c ,~)  are the spatial spectral densities of the time auto- 
correlation functions of the Langevin force and the hydrodynamic velocity fluctuations. 

An equation for the evolution of the velocity autocorrelation function (VACF) 
C v v ( k ,  T) can be obtained from (1) [3,5]: 

P~C~~(~,T)+~'C,,(~,~-~~).[PCVV(~,O)]-'.C~V(~,~,) d dT1 = O .  

For the sake of convenience we will employ the Laplace transformation of the time- 
dependent functions, with the help of which and the well-known relation for the 
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velocity spatial spectral density (61 C,,(k,O) = ( k B T / p ) l ,  the above equation 
takes the form 

[pkBTls + C F F ( k ,  41 * C,,(k,s)  = (kBT)21. (2) 

Here I denotes the unit tensor and k,T is the BO~~ZIIK~M factor. The main aim of 
this letter is to obtain in explicit form the autocorrelation function of the Langevin 
force and the corresponding VACF of the fluid fluctuations. This goal is achieved by 
modelling of the random force Fh resulting from an effective collision [7J 

The interaction between fluid particles can generally be presented by an operator 
&(U- V ) ,  acting on the difference between the local hydrodynamic velocity V ( r ,  t )  
and an effective velocity field U(r,i) accounting for the surrounding medium. In 
accordance with the classical theory of collisions [6,7], the operator St is linear and 
the momentum balance of the motion has the form p ( d V / d t )  = StU - StV. This 
result is equivalent to (l), and assuming the identity of operators St and G for the 
Langevin force the following is obtained 

Using this equation, its obvious consequences: (Uk(t))  = 0 and k,T(dF,/dl)(O) = 
CF,(k,O) . U,(O), and the stationary nature of the considered processes, a link 
between the autocorrelation function of the Langevin force and the VACF of the 
effective field 

d 
- C F F (  k, r ) = - ( ~ B T )  - * C F F (  k, 0) C,, (k, 71) . C F F  (k, r - 71) d 71 d r  

is obtained, which, by application of Laplace transformation, assumes the form 

LT 
c F F ( k 9 0 )  - sCFFp(k,s) = (k,~)-'cFF(k,o). G , u ( k ? ~ ) * e F F ( k r ~ ) .  (3) 

The use of this result requires knowledge of an adequate expression of &(k, s). 
The basic assumption in the present letter is the equivalence of the VACF of the local 
and effective fields &,(k,s) = 6 , , (k , s ) .  Such interpretation of the velocity 
U ( r , t )  is in accordance with the Faxen theorem 181, according to which U is the 
fluctuating velocity field generated by the surrounding medium at the point r .  From 
this consideration and the isotropy of the system described it follows that the velocity 
U is just another stochastic realization of the random process V ( r ,  t), i.e. they have 
the same statistical properties. 

A consequence of the obtained results is the discovery of the autocorrelation func- 
tion of the Langevin force and the VAC= in explicit form. Substituting the correlation 
e v v ( k , s )  from (2) into (3) as e,,(k, s) leads to the following expression of the 
spectral density of the Langevin force autocorrelation function 

2FF( k, s) = (kBTp/ r , )  I [ Ja -~2src] kBTpv(  k, s) ka I (4) 
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where ~ , ( k )  = 3kBTpC;&(k,0) is the correlation time and a generalized kine- 
matic viscosity [ d--- v(k,s) is introduced. Using this equation the frequency depen- 
dence of U( IC, s) and an alternative expression for T~ 

V(k,S) = U(k,o) [d7 1 f (2STc) - 2STc 3 T; ’= u(k,0)k2 

can be derived. The reverse Laplace transformation of (4) affords the Langevin 
force autocorrelation function time dependence in analytical form, CFF(k,T) = 
( IC,T~/TZ) I (T~/T)J~(~T/T, ) .  Here J1(.. .) is the Bessel function of the 6rst kind. 
Equations (2) and (4) also allow one to find the spectral density of the VACF, the 
reverse Laplace transformation of which is 

c V V ( k , T )  = (kBT/p)1(T, /T)J, (2T/T, ) .  (5) 

It is seen from (5) that Cvv(IC,~) has the same T dependence as CFF(k,‘). 
The correctness of the obtained results is confirmed by the fact that a simiiar damped 
oscillating VACF of the fluid particles is computed in the hown numerical simulation 
results [q. 
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